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PATCH DYNAMICS
FOR MULTISCALE PROBLEMS

M U L T I P H Y S I C S
M O D E L I N G

There are important systems—those
that couple molecular dynamics
with a material’s macroscale behav-
ior or use a Boltzmann particle

model to predict large-scale patterns in a fluid
flow, for example—that must be modeled on
relatively long time or space scales, but the dy-
namics can be advanced only on short time or
space scales. First developed by Yannis
Kevrekidis and his collaborators,1–5 patch dy-
namics is an efficient approach for bridging these
scales. Essentially, patch dynamics uses locally
averaged properties of short space–time scales
to advance and predict long space–time scale
dynamics. Inspired by Kevrekidis’ early success,
E. Weinan and Bjorn Engquist recast the ap-
proach into an algorithm they call the heteroge-
neous multiscale method6 and demonstrated its ap-
plicability to additional problems. 

In this article, I describe how patch dynamics
bridges multiple scales and provides new tools for
scientists and engineers trying to predict the dy-
namics of long space–time scales. When success-

fully applied, patch dynamics can use microscopic
descriptions of a problem to create a system-level
framework that helps predict macroscopic proper-
ties from direct numerical simulations of relevant
microscopic models. 

Bridging the 
Macroscale and Microscale
Most continuum models of reaction and transport
processes are derived as conservation laws (mass,
species, momentum, and energy) whose average
properties are described by partial differential
equations (PDEs)—for example, the representation
of viscous stresses for Newtonian fluids or mass-ac-
tion chemical kinetics expressions. However, for a
growing class of simulations—including crack
propagation, molecular dynamics, Boltzmann ki-
netic theory models, and modeling the membrane
of a living cell—microscale models aren’t based on
PDEs, but on other physically motivated discrete
models. The mechanical properties of deforming
materials, such as modeling a material’s stress and
hardening or predicting defect dynamics as a func-
tion of load, often hinge on microscopic transitions
that macroscopic-averaged PDE models don’t ac-
curately account for. 

If we need to predict a system’s behavior for
macroscopic space–time scales when only the mi-
croscopic model is available, the computational
cost can be prohibitive—as it will be for the fore-
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properties from atomistic descriptions require new approaches for predicting macroscopic
properties. Patch dynamics bridges the gap between the time and space scales at which
the microscopic models operate, helping predict system-level behavior. 
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seeable future. In situations in which we know a
physical process’s microscopic description, patch
dynamics can help us compute the microscale dy-
namics on a grid of small patches, which in turn can
help us predict macroscale behavior. Patch dynam-
ics circumvents the need for a closed-form macro-
scopic description of the system and bypasses the
need to explicitly define macroscopic equations,
but it still delivers macroscopic-level information. 

Moreover, macroscale equations might be un-
available because microscale dynamics (such as
propagation at the tip of a crack) is a highly non-
linear function of small-scale physics, and contin-
uum models can’t capture this singular behavior. In
other physical models, the macroscopic equations
for average quantities such as mass, momentum, or
energy are known, but the equations for the higher
moments of the variables’ distribution on the mi-
croscale aren’t. Patch dynamics can predict system
behavior of these higher moments for long
space–time scales without explicit evolution equa-
tions such as PDEs. 

Finite difference and finite element methods are
standard indispensable algorithms for solving

PDEs in science and engineering. The tools and
analysis in applying these methods have a lot in
common with patch dynamics. In patch dynam-
ics—as well as in finite difference and element
methods—we first define a mesh (such as the one
in Figure 1) to cover the domain of interest. Next,
we define the macroscale solution U at the grid
points and approximate the PDEs with finite dif-
ferences to define the time derivative Ut at the grid
points. The finite difference method is an inge-
nious technique that uses a PDE to combine the
neighboring values of the solution on a grid to de-
fine a time derivative for the solution at the grid
points. These time derivatives advance the solu-
tion in time by using a numerical integration
method, such as Runge-Kutta. We determine the
approach’s accuracy by how well the mesh resolves
the underlying solution, how accurately the PDE’s
finite difference approximation defines Ut, and
how accurately the numerical integration method
advances the solution in time. 

As in a finite difference method, the first step in
patch dynamics is to define an appropriate grid that
resolves the macroscale structure. In finite differ-
ence methods, we solve for the value of the aver-
aged microscale at each of the grid points. In patch
dynamics, the grid points are stretched into the
small patches (regions) where the microscopic
model will be solved. Next, we generate micro-
scopic initial conditions in the patch to agree with
the macroscale averages at the grid points. The
global macroscopic solution is defined by interpo-
lating the macroscale averages at the grid points.
This interpolant defines the microscale boundary
conditions at the edges of the patches and provides
communication across the spatial gaps between the
patches. The microscale solution is then advanced
a short time in each patch using the microscopic
model. The integration of the microscopic model
creates changes in the macroscale averages over the
patch, thus defining the time derivatives of aver-
aged quantities and their moments. As in the PDE
case, we use these time derivatives to advance the
macroscopic variables in time via a numerical inte-
gration method. 

Patch dynamics uses the patches’ microscopic
models and interpolated boundary conditions in
the same way that finite difference methods use a
PDE to define time derivatives. Accuracy de-
pends on certain assumptions, such as the
macroscale dynamics being separated from the
microscale dynamics and the macroscale dynam-
ics being statistically stable to small perturbations
in the microscale. 

Patch dynamics is related to previous ap-
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Figure 1. A typical macroscale solution mesh. In patch dynamics and
finite difference approximations, the macroscale variables are defined
at the grid points of a mesh chosen to resolve the solution. The
standard PDE adaptive grid methods can be used to resolve gradients in
the macroscale solution. Both patch dynamics and finite difference
methods generate time derivatives mesh points; these time derivatives
then help advance the solution in time. (Figure courtesy of S. Li.)
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proaches that use microscopic models and com-
puter analysis to locate bifurcation points or the
asymptotic dependence of the control parameter
near the bifurcation.7–10

Overview of Patch Dynamics
The algorithmic flow for patch dynamics is simi-
lar to that of a finite difference code for solving
PDEs. Consider Figure 2, the solution of a one-
dimensional physical system in which the
microscale structure of the solution u(x) varies
rapidly, but the locally averaged value of the solu-
tion <u(x)> varies slowly. The goal of deriving and
solving the macroscale equations is to predict the
behavior of the solution’s smooth average values,
without following the microsolution’s rapidly
varying space–time scales. The patches commu-
nicate with each other through the patch bound-
ary conditions, similar to the way finite difference
approximations of PDEs communicate the value
of the discrete solution at the grid point to the so-
lution at the surrounding grid points. We use the
boundary conditions obtained for the macroscale
reconstructed solution to define the microscale
solution’s statistical properties in the buffer region
enclosing the patch. The reconstructed
macroscale solution might be obtained, for exam-
ple, by interpolating the macroscopic field vari-
ables between the patches with a local piecewise
polynomial interpolant. 

We can summarize the patch dynamics algo-
rithm for time-dependent problems in the follow-
ing fashion:

1. Determine the appropriate variables for defin-
ing the macroscale solution U = (<u>,
<ux>,<uy>, <uxx>, <uxy>, and so on). Patch dy-
namics succeeds only if the slowly varying spa-
tial macroscale quantities are sufficient to de-
termine the system’s dynamics. The initial
conditions for the macroscale are defined at
grid points based on the macroscale length
scale �X, which adequately samples the
macroscale solution. In Figure 2, the grid
points xi and xi+1 resolve the macroscale
smooth solution before becoming the centers
of the patches. 

2. Define the patches with length scale �x at the
grid points of the mesh covering the
macroscale domain. The microscale dynam-
ics, defined on the small length scale �x <<
�X, will be modeled in each of these patches. 

3. Using the macroscopic solution U, define the
microscale initial conditions u for each mi-
croscale patch to match the average

macroscale quantities. In time-dependent
problems, the microscale solution from the
last time step is adjusted using a defect-cor-
rection algorithm so that it has the appropri-
ate averages. This lifting procedure is the step
in which the macroscale communicates with
the microscale.

4. Define the patches’ boundary conditions by in-
terpolating the macroscale variables defined at
the grid points and then evaluating the inter-
polant in a buffer region surrounding each
patch, as shown in Figure 2. The microscale
solution boundary conditions agree statistically
with the macroscale interpolant. This is the
step in which the patches communicate with
each other through the boundary conditions. 

5. Using the microscopic model, advance the mi-
croscale solution in the patches a short time
�t, as shown in Figure 3. 

6. If the current time for the patch solution is
sufficient to calculate the statistical averages,
then go to 7; else define (lift) U from the mi-
croscale and go to 4. 

7. Calculate the time derivatives of statistical av-
erages to macroscale solution Ut = (<u>t, <ux>t,
<uxx>t, and so on) for the microscale
space–time patch shown in Figure 3. This re-
striction procedure is the step in which the mi-
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Figure 2. One-dimensional physical system. The microscale variable u(x)
varies rapidly, but the macroscopic variables U = (<u>, <ux>, <uxx>, and
so on) vary slowly. The boundary conditions for the patches are defined
by extending the microscale solution into a buffer region surrounding
each patch. The patches communicate with each other via boundary
conditions similar to the way finite difference approximations of PDEs
communicate among the surrounding grid points. 
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croscale communicates with the macroscopic. 
8. Using a standard time integration method, ad-

vance the macroscale solution from time Ti to
Ti+1 with macroscale time step �T >> �t, as
shown in Figure 3. 

9. Go to 3.

The computational work of patch dynamics is
dominated by solving the microscale model. We
can estimate it from the fraction of the space–time
domain covered by the patches, such as the one-
dimensional space–time plot in Figure 3. If the
patches cover 10 percent of the region in each
space and time direction, for example, the mi-
croscale model is solved on (0.1)d+1 of the
space–time domain. For this situation in three-
dimensional problems (d = 3), the microscale model
is solved on 0.0001 of the full domain, resulting in
a corresponding savings in computer time. 

Patch dynamics is not appropriate for all prob-
lems. The underlying reference grid must accu-
rately resolve the macroscale solution, and there
must be a well-defined microscale model. We also
need an appropriate set of macroscale quantities
sufficient to define the distribution of microscale
variables so that the microscale model is statisti-
cally stable (meaning slight variations in mi-
croscale initial conditions have little effect on
macroscale dynamics). The macroscale spatial
and temporal scales must be separated from the
microscale. 

We can summarize the list of conditions for
when patch dynamics is appropriate: 

• the macroscale variables are sufficient for defin-
ing the microscale initial conditions;

• the microscale dynamics can be sampled suffi-
ciently closely in time and space that macroscale
dynamics varies smoothly between sampling lo-
cations; 

• the macroscale dynamics are separated from the
microscale dynamics (that is, �t << �T and �x <<
�X) and the microscale model is statistically sta-
ble; and 

• the system’s dynamics can be advanced on short
time (� t) or spatial (�x) scales, but the calcula-
tion is too expensive to advance the solution on
the much longer time �T or spatial �X scales. 

This might seem like a daunting list or restrictions,
but a surprising number of problems satisfy all of
them, including simulations of reaction-diffusion
equations, molecular dynamics, epidemiology, and
lattice Boltzmann particle methods.1,5,7,10 When
all these conditions are met, patch dynamics is an
appropriate method to try; when they’re not,
there’s always the option of waiting for the next two
or three generations of supercomputers before sim-
ulating the problem or extending the range of ap-
plicability for the method. 

Once the microscopic model is fully defined and
an appropriate set of macroscale variables is estab-
lished, we can usually track the success of patch dy-
namics to three crucial steps: lifting the microscale
initial conditions from the macroscale, bridging the
spatial gaps, and bridging the temporal gaps. Let’s
look at each of these steps.1,3–5

Lifting the Microscale Conditions
Typically, there are only a few macroscopic mean-
field variables of average values, their derivatives,
and other statistical moments of the microscopic
solution. Many reconstructed solutions can agree
with the given spatially averaged statistical proper-
ties for the patch, but some of these microscale ini-
tial conditions will create exceptionally fast tran-
sients in the solution caused by imbalances in the
microscale initial conditions made during lifting.
These transients must heal quickly for the ap-
proach to be effective.1,3,4

It’s difficult to generate appropriate initial mi-
croscale states that retain a physically realistic
balance between microsopic forces. Unbalanced
initial conditions can generate unacceptable initial
transients in the microscale simulation. To mini-
mize this and prevent the introduction of non-
physical artifacts, we use a defect-correction
approach and define only the change in the mi-
croscale from a previous estimate of the solution (at
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Figure 3. Space–time plot for the patches in Figure 2. The microscale
solution is advanced in small space–time patches until we can get
accurate approximations of the time derivatives of the macroscale
variables U over the patch. These time derivatives are used to
advance the macroscale variables a macroscale time step, and then
the process repeats. 
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a previous time, for example). This approach can
be based on the maximum entropy approach,
which minimizes the change from the previous so-
lution by explicitly adding an interpolant. 

Even the best methods will create microscale ini-
tial conditions that generate some transients. If the
model is statistically stable, these transients will
quickly decay, but their influence on the time-av-
eraged statistical properties, such as <u>t or <ux>t,
will decay only linearly in time. In situations where
the microscale initial transients take an exception-
ally long time to settle down, it can be helpful to
predict the time derivatives as well as the macro-
scopic variables’ mixed space–time derivatives.
However, defining the time derivatives of the ini-
tial conditions to be consistent with both space and
time derivatives of U requires solving a small local
system of equations. This initialization can be dif-
ficult because the average time derivatives are non-
linear nonlocal functions of the microsolutions in
several patches. 

Regardless of what reconstruction method we’ve
used, however, we’ve found that the accuracy im-
proved if we applied the same lifting method con-
sistently on every time step. 

Bridging the Spatial Gaps
Microscale dynamics requires boundary condi-
tions, which are imposed by defining the mi-
croscale solution within a cocoon or buffer region
surrounding the patches that agrees with the sta-
tistical properties of the macroscale variables. The
macroscale variables are defined between the
patch grid points by polynomial interpolation. We
typically use tensor-product piecewise-Hermite
polynomial interpolants for the macroscale vari-
ables to define the microscale’s statistical proper-
ties in the patches’ buffer regions. These fast,
simple formulas for the interpolation involve only
the neighboring patches. In two spatial dimen-
sions, the interpolant, and hence the boundary
conditions for the buffer region, are defined from
the piecewise polynomials for the quadrant in
which the patch boundary resides. The explicit
formula for the boundary conditions is a linear
combination of the variables defined at the cor-
ners of the macroscale cell. 

The statistical distribution of the microscale solu-
tion in the buffer region is defined to agree with the
macroscale interpolant. When the microscale model
is a discrete multibody simulation, for example, the
microscale solution is extended into the buffer re-
gion so that the statistical distribution of the parti-
cles’ density satisfies the appropriate boundary con-
ditions in the buffer region. In this way, the patches

communicate with each other through the interpo-
lated macroscale and boundary conditions.

Because the patches must have statistical well-
posed boundary conditions for the microscale,
the macroscale interpolant must be converted
into a microscale boundary condition appropri-
ate for the microscopic model. If the microscale
model were a conservation law in divergence
form, the natural boundary conditions would be
stated in terms of the fluxes. If we know the un-
derlying microscale fluxes, then they should be
included as one of the macroscopic field variables
and interpolated between patches to define the
boundary conditions. Unfortunately, the fluxes
are rarely known, so the boundary conditions are
usually defined based on the macroscale solution’s
value or gradients. 

Another consideration for equations with con-
servation laws is to retain global conservation of the
quantities, including the material not being simu-
lated between the patches. If we don’t keep track of
the material between the patches, the method will
be only approximately conservative. For the full cal-
culation to preserve global conservation, we must
account for the material in the gaps between the
patches, which we do by calculating auxiliary
macroscale descriptions of the conserved variables
within the gaps. The conservative patch dynamics
algorithm requires that the conserved variables be
updated on every microscale time step by account-
ing for their flux in and out of neighboring patches.
These auxiliary variables play a key role in con-
structing the macroscale interpolant that defines
the boundary conditions. We construct the con-
servative interplant to agree with the average val-
ues of the material in each patch, but the integral
of the interpolant between the patches must agree
with the material in the gaps.11

Bridging the Temporal Gaps
In the numerical solution of PDEs, the equation’s
time derivative is returned by evaluating an ex-
plicit function of discrete values at the grid
points. In patch dynamics, we obtain the time de-
rivative through a microscale integration of an-
other model. We then use this microscale inte-
gration to obtain the solution’s average time
derivatives and the time derivatives of the solu-
tion’s spatial moments. 

An effective lifting process will construct the mi-
croscale initial conditions for the patches that are
in balance so that the solution quickly reaches a
balanced state after a fast transient. Even for a sta-
tistically stable model, the initial transients caused
by the lifting process can create significant errors
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in the average properties until the microscale solu-
tion settles down. Therefore, calculations for the
space- and time-averaged statistical properties
should begin after the transients have decayed. 

As the microscale solution is advanced, monitor-
ing the rate of change in macroscale variables
guides when the initial transients die down and
forces are balanced. After the solution has settled
down, these transients can be estimated by calcu-
lating a running estimate of <u>t (and possibly
higher derivatives) during the microsimulation at
each microscale time step �t. 

Using the average values of the microscale vari-
ables’ solution at the current space–time patch,
their past values, and their time derivatives, <u>t
advances the microscale solution a macroscale time
step. The time integration of the patches on the
time macroscale can be done with standard time in-
tegration methods such as the Adams multistep
methods, Runge-Kutta, or even Taylor series
methods. Kevrekidis and Gear derived a method
especially well suited for patch dynamics called the
projected Euler k-M method.2 Their projected
Euler k-M time-stepper extrapolates the time scales
from the microscopic directly to the system level.
They take a few small, accurate time steps and then
use polynomial extrapolation to use the last few so-
lution values to project the solution ahead in time. 

Note that the time derivatives are most accurate
if they’re defined at the center of the space–time
patch. This time isn’t at the beginning of the
macroscale time step, but slightly further along;
the time shift can be accounted for by a slight
modification of the standard numerical time inte-
gration methods. 

Currently, patch dynamics is appropriate only for
statistically stable models—that is, small pertur-
bations in the microscale’s initial conditions relax
(anneal) quickly to a distribution that is relatively
independent of the microscale’s detailed structure.
Microscale statistics must be insensitive to the de-
tails of initial conditions. We can empirically test
the statistical stability of the initial conditions for a
particular model by generating multiple realiza-
tions of a model and calculating the relaxation time
of the difference between two initial distributions.
If the model is found to be sensitive to these small
changes in the microscale distribution, patch dy-
namics isn’t an appropriate method 

The numerical solution of PDEs is
arguably the most powerful compu-
tational algorithm for gaining in-
sight into the behavior of complex

physical systems. In the past half century, we’ve
built a huge superstructure to support it, in-
cluding adaptive mesh methods, linear and non-
linear solvers, time integration methods, pow-
erful visualization software, error estimation and
analysis tools, sensitivity analysis, and optimiza-
tion tools.

Unfortunately, PDEs can actually model rela-
tively few phenomena. Substantial time and energy
is focused on them because, just as the man who
lost his keys spends the night looking under the
lamppost (because it’s where the light is), compu-
tational scientists have spent many long nights
studying PDEs—they’re where the tools are. 

Patch dynamics uses these same tools and can
light the way as we search for new approaches be-
yond the lamppost for investigating the links be-
tween micro- and macroscale models. Although
solving microscale dynamics for entire problems
would be best, the necessary computer resources
aren’t likely to be available to do so on the foresee-
able generations of computers. By bridging the
micro- and macroscales, we’ll gain a way to sys-
tematically create appropriate hybrid models to
study the long space–time scales of the macroscale
model based on the microphysics. 

Patch dynamics is being developed for multi-
scale, multiphysics models where even the fastest
computers are still inadequate to perform truly
molecular-scale analysis of complex macroscopic
phenomena. The approach has been effective on
some simple problems, and researchers are ex-
tending and developing it for more complex
problems, even as they evaluate the method’s ef-
fectiveness by comparing it with detailed mi-
crosimulations. Patch dynamics is also being
combined with adaptive mesh refinement to bet-
ter resolve solutions when local regions include
high gradients. Moreover, patch dynamics is be-
ing developed for three-dimensional molecular
dynamics and lattice Boltzmann models, hetero-
geneous hard materials design, biological sys-
tems, deformation and failure in hard materials,
growth of thin films and nanostructures, and
transport and chemical reaction processes in
complex fluid flow.1,5,10,12
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